38,526 research outputs found

    A study on surface cracking in extrusion of aluminium alloy AA2014

    Get PDF
    Surface cracking is generally recognised as one of the main defects occurring during the process of aluminium extrusion, especially in the case of the so called hard aluminium alloys. Previous experiments suggest that this type of defect is caused by the rise in temperature as the process proceeds. Some experiments indicate that the surface quality is good even though the temperature may be high during extrusion. It is also well known that crack criteria have been adopted to explain the cracking that occurs in extrusion, blanking and rolling, etc. In this study, a finite element method (FEM) is used in different ways to predict surface cracking during hot extrusion. The crack criteria are integrated into the FEM code FORGE12.0. The effectiveness of these criteria in predicting surface cracking in the case of hot extrusion is discussed. The FEM simulation also provides some other quantitative data, such as the temperature rise during extrusion from different initial temperatures. In addition, the principal stresses at the die land area at different extrusion stages are also shown

    Tail Asymptotics of Deflated Risks

    Get PDF
    Random deflated risk models have been considered in recent literatures. In this paper, we investigate second-order tail behavior of the deflated risk X=RS under the assumptions of second-order regular variation on the survival functions of the risk R and the deflator S. Our findings are applied to approximation of Value at Risk, estimation of small tail probability under random deflation and tail asymptotics of aggregated deflated riskComment: 2

    Mass formulae and strange quark matter

    Full text link
    We have derived the popularly used parametrization formulae for quark masses at low densities and modified them at high densities within the mass-density-dependent model. The results are applied to investigate the lowest density for the possible existence of strange quark matter at zero temperature.Comment: 9 pages, LATeX with ELSART style, one table, no figures. Improvement on the derivation of qark mass formula

    Characteristics of homogeneous charge compression ignition (HCCI) combustion and emissions of n-heptane

    Get PDF
    This paper reports the outcome from a systematic investigation carried out on HCCI (Homogeneous Charge Compression Ignition) combustion of a diesel type fuel. The n heptane was chosen in this study to study the premixed diesel HCCI combustion characteristics with port fuel injection. Measurements were carried out in a single-cylinder, 4-stroke and variable compression ratio engine. Premixed n-heptane/air/EGR mixture was introduced into the cylinder by a port fuel injector and an external EGR system. The operating regions with regard to Air/Fuel ratio and EGR rate were established for different compression ratios and intake temperatures. The effects of compression ratios, intake temperatures, Air/Fuel ratios and EGR rates on knock limit, auto-ignition timing, combustion rate, IMEP, and engine-out emissions, such as NOx, CO, and unburned HC, were analysed. The results have shown HCCI combustion of n-heptane could be implemented without intake charge heating with a typical diesel engine compression ratio. The attainable HCCI operating region was mainly limited by the knock limit, misfir, and low IMEP respectively. Higher intake temperature or compression ratio could extend the misfire limit of the HCCI operation at low load but they would reduce the maximum IMEP limit at higher load conditions. Compared with conventional diesel combustion, HCCI combustion lead to extremely low NOx emissions ( less than 5 ppm) and smoke free exhaust. But HCCI diesel combustion was found to produce higher HC and CO emissions. An increase in intake temperature or compression ratio helped to reduce HC and CO emissions.
    corecore